Stochastic Weighted Function Norm Regularization

نویسندگان

  • Amal Rannen Triki
  • Maxim Berman
  • Matthew B. Blaschko
چکیده

Deep neural networks (DNNs) have become increasingly important due to their excellent empirical performance on a wide range of problems. However, regularization is generally achieved by indirect means, largely due to the complex set of functions defined by a network and the difficulty in measuring function complexity. There exists no method in the literature for additive regularization based on a norm of the function, as is classically considered in statistical learning theory. In this work, we propose sampling-based approximations to weighted function norms as regularizers for deep neural networks. We provide, to the best of our knowledge, the first proof in the literature of the NP-hardness of computing function norms of DNNs, motivating the necessity of a stochastic optimization strategy. Based on our proposed regularization scheme, stability-based bounds yield a O(N− 1 2 ) generalization error for our proposed regularizer when applied to convex function sets. We demonstrate broad conditions for the convergence of stochastic gradient descent on our objective, including for non-convex function sets such as those defined by DNNs. Finally, we empirically validate the improved performance of the proposed regularization strategy for both convex function sets as well as DNNs on real-world classification and segmentation tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparsity-Aware Affine Projection Algorithm for System Identification

This work presents a new type of the affine projection (AP) algorithms which incorporate the sparsity condition of a system. To exploit the sparsity of the system, a weighted l1-norm regularization is imposed on the cost function of the AP algorithm. Minimizing the cost function with a subgradient calculus and choosing two distinct weighting for l1-norm, two stochastic gradient based sparsity r...

متن کامل

Compressive Sensing Inverse Synthetic Aperture Radar Imaging Based on Gini Index Regularization

In compressive sensing (CS) based inverse synthetic aperture radar (ISAR) imaging approaches, the quality of final image significantly depends on the number of measurements and the noise level. In this paper, we propose an improved version of CSbased method for inverse synthetic aperture radar (ISAR) imaging. Different from the traditional l1 norm based CS ISAR imaging method, our method explor...

متن کامل

Subband Adaptive Filter Exploiting Sparsity of System

This paper presents a normalized subband adaptive filtering (NSAF) algorithm to cope with the sparsity condition of an underlying system in the context of compressive sensing. By regularizing a weighted l1-norm of the filter taps estimate onto the cost function of the NSAF and utilizing a subgradient analysis, the update recursion of the l1-norm constraint NSAF is derived. Considering two disti...

متن کامل

Two Equivalent Presentations for the Norm of Weighted Spaces of Holomorphic Functions on the Upper Half-plane

Introduction In this paper, we intend to show that without any certain growth condition on the weight function, we always able to present a weighted sup-norm on the upper half plane in terms of weighted sup-norm on the unit disc and supremum of holomorphic functions on the certain lines in the upper half plane. Material and methods We use a certain transform between the unit dick and the uppe...

متن کامل

Collaborative Filtering in a Non-Uniform World: Learning with the Weighted Trace Norm

We show that matrix completion with trace-norm regularization can be significantly hurt when entries of the matrix are sampled non-uniformly, but that a properly weighted version of the trace-norm regularizer works well with non-uniform sampling. We show that the weighted trace-norm regularization indeed yields significant gains on the highly non-uniformly sampled Netflix dataset.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1710.06703  شماره 

صفحات  -

تاریخ انتشار 2017